

Two Atoms Walking Down the Street

UNING ADADADADADADADA

Controlled Chain Reaction

Neutron Multiplication Factor

 $k = \frac{\text{Number of neutrons in a generation}}{\text{Number of neutrons in the previous generation}}$

Critical – the chain reaction is being maintained. k=1power output is constant

Reactivity

Critical

Power Steady

Sub-Critical Power Decreasing

Super Critical Power Increasing

∆k = # of neutrons change per generation neutrons in last generation

(approx)

More on Reactivity

<u>ENGRADEDE</u>

 $\Delta k = 0$ Critical $\Delta k < 0$ Sub-Critical $\Delta k > 0$ Super Critical

Practical units mk = $\frac{1}{1000}$ k

Reasons for Reactivity Control

Maintain reactor critical at a steady power

- Increase of decrease power at a controlled rate
- Reduce power quickly

Excess Reactivity

Kallalla Nalla Na Na Na Na Na

Adjusting Reactivity

- Adjusting fissile material in core
 Fuelling
- Adjusting the amount of absorption
 - Liquid zones, adjuster rods, absorber rods, shut off rods, liquid poison addition, liquid poison injection, moderator purification
- Adjusting leakage

nanamanamananananana

Liquid Zone Control

000000000000

unununununununununun

